Organic compounds present in the natural Amazonian aerosol: Characterization by gas chromatographymass spectrometry
نویسندگان
چکیده
[1] As part of the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA)Cooperative LBA Airborne Regional Experiment (CLAIRE) 2001 campaign in July 2001, separate day and nighttime aerosol samples were collected at a ground-based site in Amazonia, Brazil, in order to examine the composition and temporal variability of the natural ‘‘background’’ aerosol. We used a high-volume sampler to separate the aerosol into fine (aerodynamic diameter, AD < 2.5 mm) and coarse (AD > 2.5 mm) size fractions and quantified a range of organic compounds in methanolic extracts of the samples by a gas chromatographic-mass spectrometric technique. The carbon fraction of the compounds could account for an average of 7% of the organic carbon (OC) in both the fine and coarse aerosol fractions. We observed the highest concentrations of sugars, sugar alcohols, and fatty acids in the coarse aerosol samples, which suggests that these compounds are associated with primary biological aerosol particles (PBAP) observed in the forest atmosphere. Of these, trehalose, mannitol, arabitol, and the fatty acids were found to be more prevalent at night, coinciding with a nocturnal increase in PBAP in the 2–10 mm size range ( predominantly yeasts and other small fungal spores). In contrast, glucose, fructose, and sucrose showed persistently higher daytime concentrations, coinciding with a daytime increase in large fungal spores, fern spores, pollen grains, and, to a lesser extent, plant fragments (generally >20 mm in diameter), probably driven by lowered relative humidity and enhanced wind speeds/convective activity during the day. For the fine aerosol samples a series of dicarboxylic and hydroxyacids were detected with persistently higher daytime concentrations, suggesting that photochemical production of a secondary organic aerosol from biogenic volatile organic compounds may have made a significant contribution to the fine aerosol. Anhydrosugars (levoglucosan, mannosan, galactosan), which are specific tracers for biomass burning, were detected only at low levels in the fine aerosol samples. On the basis of the levoglucosan-to-OC emission ratio measured for biomass burning aerosol, we estimate that an average of 16% of the OC in the fine aerosol was due to biomass burning during CLAIRE 2001, indicating that the major fraction was associated with biogenic particles.
منابع مشابه
Identification of volatile organic compounds of some Trichoderma species using static headspace gas chromatography-mass spectrometry
Fungi release wide spectrum of volatile organic compounds (VOCs) that belong to several chemical groups with different biochemical origins such as monoterpenes, sesquiterpenes, alcohols, aldehydes, aromatic compounds, esters, furans, ketones, sulfur and nitrogen compounds. Trichoderma species are the most studied fungal biocontrol agents and are successfully used as biofungicides and biofertili...
متن کاملAnalysis of fatty acid composition of Withania coagulans fruits by gas chromatography/mass spectrometry
Background and objectives: Withania coagulans Dunal (Solanaceae) fruits are recommended to treat asthma, dyspepsia, biliousness, flatulent colic, liver complaints, intestinal infections, strangury, wounds and as diuretic, emetic and sedative agent in Indian traditional system of medicine. The objective of this study was to describe the systematic fatty acid composition...
متن کاملOn-line analysis of organic components in fine and ultrafine particles by photoionization aerosol mass spectrometry.
A new method, photoionization aerosol mass spectrometry (PIAMS), is described for real-time analysis of organic components in airborne particles below approximately 300 nm in diameter. Particles are focused through an aerodynamic lens assembly into the mass spectrometer where they are collected on a probe in the source region. After a sufficient amount of sample has been collected, the probe is...
متن کاملGas phase precursors to anthropogenic secondary organic aerosol: detailed observations of 1,3,5-trimethylbenzene photooxidation
A series of photooxidation experiments were conducted in an atmospheric simulation chamber in order to investigate the secondary organic aerosol (SOA) formed from the anthropogenic model gas phase precursor, 1,3,5-trimethylbenzene. Alongside specific aerosol measurements, comprehensive gas phase measurements, primarily by chem-5 ical ionisation reaction time-of-flight mass spectrometry (CIR-TOF...
متن کاملMolecular Characterization of Organosulfur Compounds in Biodiesel and Diesel Fuel Secondary Organic Aerosol.
Secondary organic aerosol (SOA), formed in the photooxidation of diesel fuel, biodiesel fuel, and 20% biodiesel fuel/80% diesel fuel mixture, are prepared under high-NOx conditions in the presence and absence of sulfur dioxide (SO2), ammonia (NH3), and relative humidity (RH). The composition of condensed-phase organic compounds in SOA is measured using several complementary techniques including...
متن کامل